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Quantum coherence effects in atomic media such as electromagnetically-induced
transparency and absorption, lasing without inversion, super-radiance and gain-assisted
superluminality have become well-known in atomic physics. But these effects are not
unique to atoms, nor are they uniquely quantum in nature, but rather are fundamental to
systems of coherently coupled oscillators. In this talk I will review a variety of analogous
photonic coherence phenomena that can occur in passive and active coupled optical
resonators. Specifically, I will examine the evolution of the response that can occur upon
the addition of a second resonator, to a single resonator that is side-coupled to a
waveguide, as the coupling is increased, and discuss the conditions for slow and fast light
propagation, coupled-resonator-induced transparency and absorption, lasing without gain,
and gain-assisted superluminal pulse propagation. Finally, I will discuss the application
of these systems to laser stabilization and gyroscopy.
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â 	 Effects in Passive Systems
Coupled-Resonator-Induced Transparency and
Absorption (GRIT and CRIA)

Gain-Assisted Superluminality (GAS)

â Coherence Effects in Active Systems
Lasing Without Gain (LWG)

nn Reduced lasing thresholds

â Application: laser gyroscopy
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Lasing Without Gain in Coupled Resonators

Analogous to LWI (Ne < Ng): Gain in resonator 1 < Loss in resonator 2

Lasing occurs by photon trapping — indistinguishability required.
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Coupled resonators are analogous to multilevel atoms and
are described approximately by the damped Rabi problem.

Photons can be shuffled from one resonator to another
using coherent and adiabatic photon transfer techniques.
Coupled resonators can store light.

Coherence phenomena such as EIT, EIA, GAS, and LWI
are fundamental to systems of coherently coupled
oscillators. They are not unique to atoms nor are they
uniquely quantum phenomena.

The dispersion in optical micro-resonators has application
to the improvement of laser gyroscopes.
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